Mechanism of Hydrolysis of 1,3-Dithiane Derivatives. Breakdown of the Tetrahedral Intermediate

Tadashi Okuyama,* Takashi Inaoka, and Takayuki Fueno

Faculty *of* Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

Received July **7,** 1986

Acid-catalyzed hydrolysis of **2-methylene-1,3-dithiane (la)** was reinvestigated at **25** "C, and the equilibrium constanta for the first two steps of the three-step reaction were determined **to** afford rate constants for the third step, breakdown of the tetrahedral intermediate **(3).** The pH-rate profiles show that the acid-catalyzed breakdown occurs through **an** S-protonated intermediate without any change in the rate-determining step. The base-catalyzed breakdown of **3** was examined with the tert-butyl derivative **3d'** and found to undergo a change in the ratedetermining step with pH. The β , β -dimethyl derivative of **la** was $1/600$ as reactive as **la** and undergoes partially reversible protonation in contrast to the acyclic derivative.

We have previously reported on the hydrolysis of some 2-alkylidene-1,3-dithianes 1 (eq 1).¹ The hydrolysis pro-

ceeds through a three-stage mechanism involving a dithio carbocation **2** and a hydrogen ortho thio ester **3** as intermediates. Breakdown of the tetrahedral intermediate **3** was found to be rate-determining at low pH, and the rate constant k_3 could be calculated by using the equilibrium constants for stages 1 and 2 $(K_1 \text{ and } K_2)$. The breakdown is catalyzed by both acid and base.² In the previous paper¹ we considered that acid-catalyzed breakdown of the tetrahedral intermediate **3a** derived from 2-methylene-l,3 dithiane **(la)** underwent an unusual change in the ratedetermining step. This was deduced from a break in a pH-rate constant (k_3) profile that was calculated on the basis of an assumed equilibrium constant K_2 . The break is now proved to be an artifact that arose from a wrong value of K_2 for 1a, and we would like to correct the previous discussion.

On the other hand, the base-catalyzed breakdown of the tetrahedral intermediate derived from 2-tert-butyl-2 methoxy-l,3-dithiolane undoubtedly involves a change in the rate-determining step, and diffusion-controlled proton transfer from the neutral intermediate to hydroxide ion becomes rate-determining at higher $pH.^3$ In order to look into the generality of this change in the rate-determining step, hydrolysis of the dithiane derivative **3d'** was examined (eq 2), and results are presented herein.

$$
\begin{array}{c}\n\text{Me}_{3}C \searrow \searrow^S \searrow \\
\text{MeO} \searrow \searrow^S \searrow \searrow \searrow^{\star} \searrow^{\star} \searrow \searrow^{\star} \searrow^{\star} \searrow \searrow^{\star} \searrow^{\star} \searrow \searrow^{\star} \searrow \searrow^{\star} \searrow \searrow^{\star} \searrow \searrow^{\star} \searrow \searrow^{\star} \searrow \searrow^{\star} \se
$$

(1) Okuyama, T.; Kawao, S.; Fujiwara, W.; Fueno, T. *J.* Org. *Chem.* **1984,** *49,* **89-93.**

(2) Okuyama, T. *Acc. Chem.* Res., in press.

Furthermore, hydrolysis of **2-isobutylidene-1,3-dithiane (IC)** was **also** investigated for comparison with the unusual reactivities observed previously with acyclic analogues $(5c).$ ⁴ The β , β -dimethyl substitution retards enormously

the hydrolysis of the ketene dithioacetal **5a** $(1/9 \times 10^5)$ while similar retardation is much less (1/400) in the five-membered cyclic derivatives **6a** and **6c.5y6** We wished to determine the magnitude of this effect on the sixmembered cyclic derivatives **la** and **IC.**

Results

Hydrolysis of 2-Alkylidene-1,3-dithianes 1. Rates of hydrolysis **of la-c** were measured in aqueous solution (at **0.50** M ionic strength and **25** "C) in the same way as before, $¹$ although the reaction conditions are somewhat</sup> different. Results are illustrated in Figure 1.

The hydronium-ion catalytic constansts k_{H^+} were calculated from the data obtained in dilute HC1 solutions in the pH range **3-4,** where the first and second steps of eq 1 are both partially rate-determining (eq 3). Rate constants are given in Table I.

$$
k_{\rm H^{+}} = k_{1}k_{2}[\rm H^{+}]/(k_{-1} + k_{2})
$$
 (3)

Curved buffer dependencies (eq **4)** were examined for **1c** to evaluate the rate constant ratio k_2/k_{-1} (eq 5)² where

$$
\Delta k = \Delta k_{\text{max}}[B]_t / (K_{\text{app}} + [B]_t)
$$
 (4)

 Δk (= k_{obsd} - $k_{\text{H}+}$ [H⁺]) is a rate increase induced by the buffer at total concentation $[B]_t$. The parameters were

$$
k_2/k_{-1} = \Delta k_{\text{max}}/k_{\text{H}^+}[\text{H}^+]
$$
 (5)

0022-3263/86/1951-4988\$01.50/0 *0* 1986 American Chemical Society

⁽³⁾ Okuyama, **T.;** Fueno, T. *J. Am. Chem.* SOC. **1985,107,4224-4229.**

⁽⁴⁾ Okuyama, T.; Kawao, S.; Fueno, T. J. *Am. Chem.* **SOC. 1983,105, (5)** Okuyama, **T.** *J. Am. Chem.* **SOC. 1984,106, 7134-7139. 332C-3326;** *J. Org. Chem. 1984,49, 85-88.*

⁽⁶⁾ Okuyama, **T.;** Toyoda, M.; Fueno, T. *Can.* J. *Chem.* **1986,** *64,* **1116-1123.**

Figure 1. Acidity **dependence of rate constants** for **the hydrolysis of dithiane derivatives, la (a), lb** *(O),* **IC** *(O),* **2d (A), and 3d'** *(0).*

calculated by linear least-squares analysis of the correlations of $k_{H^+}[H^+]/\Delta k$ against $1/[B]_t^7$ and are given in Table II. Values of k_2/k_{-1} were used to calculate k_1 (Table I).

The β , β -dimethyl substitution does not extremely deactivate **la** (a relative value of *k,* for **la/lc** being about 600), and the protonation of **IC** is partially reversible. This behavior is similar to that of the dithiolane dervatives $5-7$ but is in marked contrast to that of the acyclic ketene dithioacetals (the relative reactivity of **5a/5c** is about lo6 and the protonation of 5c is irreversible).⁴

In strong acid, absorption of the dithio carbocation **2** was observed at about 310 nm. In moderately strong acids, a very rapid increase followed by a slow decrease in the absorbance at 310 nm was observed when the stock solution of **la** was rapidly mixed with acid in a stopped-flow spectrophotometer. The later part of the decrease, which fits the pseudo-first-order kinetics, was extrapolated to zero time to give "initial" absorbances. The initial absorbances so obtained follow a sigmoid curve against the H_R acidity function ($pK_R = 0.103 \pm 0.092$). The absorbances must correspond approximately to equilibrium concentrations of **2a** in the first two steps and $K_R = (1/K_1) + K_2$, since the third step is slow in the acidity range concerned.

Hydrolysis of 2- *tert* **-Butyl-1,3-dithianylium Ion (2d).** The reaction of **2d** was followed by starting with the isolated salt of **2d** or the 2-methoxy derivative **3d'.** In the reaction of **2d** above pH 2, disappearance of its absorption

Table I. Rate Constants for the Hydrolysis of Dithiane Derivatives"

substrate	$k_{\rm H}$ +[H ⁺], M ⁻¹ s ⁻¹	k_{2}/k_{-1}	k_1 , s ⁻¹	pK_{R}^{o}
1a	33.2	45 ^c	34	0.103(0.092)
1b	0.654	12^c	0.71	
1c	0.0428	3.5	0.055	
3d'	417			1.503 (0.086)

" **In aqueous solution of 0.50** M **ionic strength containing 1 vol** % of CH₃CN at 25 °C. ^b Standard deviations are given in parenthes**es. eValues obtained in 10 vol** % **CH3CN-H20 at 0.45 M ionic strength and 30 OC.'**

Table 11. Buffer Effects on the Rate of Hydrolysis of IC

buffer $(pH)^a$	range of buffer concn. м	$\frac{\Delta k_\text{max}}{k_\text{H}+[\text{H}^+]^b}$	$K_{\rm app}$, \circ M
chloroacetate (2.64)	$0.1 - 0.5$	3.70(0.35)	0.90(0.10)
formate (3.24)	$0.1 - 0.6$	3.24(0.10)	0.43(0.02)

6 Constant to ± 0.02 . **^bStandard deviations are given in parentheses.**

Table 111. Buffer Effects on the Rate of Formation of 4d from

		za			
buffer $(pK_a)^a$	pН	$10^2 \Delta k_{\rm max}^{}$ g^{-1}	$10^{2}h_{\text{max}}$	$\frac{K_{\rm app},b}{\rm M}$	$k_{\rm B}$ M^{-1} s ⁻¹
cyanoacetate (2.43)	2.63	5.61(0.02)	14.2	0.252(0.005)	0.149
methoxyacetate (3.53)	2.84	12.1(0.3)	22.6	0.134(0.005)	2.48
	3.02	16.0(0.6)	28.3	0.101(0.008)	2.52
formate (3.77)	2.98	16.7(0.5)	28.5	0.087(0.006)	8.95

"Taken from: Sober, H. A., Ed. CRC *Handbook of Biochemistry;* **CRC Press: Cleveland, OH, 1968. *Standard deviations are given in pareptheses.**

(313 nm) was instantaneous but formation of the thio ester **4d** (232 nm) was slow. Below pH 1.5, both disappearance of **2d** and formation of **4d** could be monitored to give the same rate constants k_{obsd} . In the intermediate pH region (2-3), an induction period for the formation of **4d** was observed, and k_{obsd} was calculated from the later part of the reaction.

Effects of buffer concentrations on the rate of formation of **4d** from **2d** were examined in some carboxylate buffer solutions in the pH range 2.6-3. The reaction in buffer solutions did not show any induction period. Plots of k_{obsd} against $[B]_t$ strongly curved approaching a constant limiting rate k_{max} with increasing $[B]_t$ as observed previously with the dithiolane derivative. 3 The curvature followed eq **4,** although the kinetic significance of the parameters is different.3 Least-squares analysis of the reciprocal correlations of Δk vs. $[\overline{B}]_t$ gave parameters listed in Table 111.

The reaction of **3d'** showed the same behavior **as** isolated **2d** at higher acidities, where the formation of **2d** is very rapid (eq **2).** At higher pH **(>4),** on the other hand, the slow acid-catalyzed formation of **4d** was observed; the formation of **2d** is rate-determining here. The pH-rate profiles are shown in Figure 1.

The "initial" absorbances at 313 nm were measured by starting with **2d** or **3d'** and extrapolating the absorbance to the time of mixing on a conventional $\bar{U}V$ spectrometer. Plots of the absorbances against the H_R function gave a sigmoid curve ($pK_R = pK_2 = 1.503 \pm 0.086$).

Discussion

The complicated pH-rate profiles of Figure 1 **and** other kinetic behavior of **1** observed are well accommodated by the mechanism of eq 1, where both the first and second

Figure 2. Acidity- k_3 profiles for the decay of **3a** (0) and **3d** (0) . Closed circles are k_{max} for 3d.

steps are partially rate-determining at higher pH and the third step becomes rate-determining with increasing acidity.² The rate constants k_3 for the third step can be calculated in the latter acidity range by eq 6.8 The k_3

$$
k_3 = (K_{\rm R} + h_{\rm S})k_{\rm obsd}/K_2
$$
 (6)

values for **la** are logarithmically plotted against pH or the acidity function h_S (defined for sulfur protonation)^{3,5} in Figure 2. The profile shows that both acid and base The profile shows that both acid and base catalyses are operating in this reaction. The acid-catalyzed reaction is simple, contrary **to** the previous suggestion' that was made on the basis of an assumed value of K_2 . Since that assumed value of K_2 is found to be too large, the suggestion was simply wrong. The rate constants k_3 ^a and k_3 ⁵ are 0.70 M⁻¹ s⁻¹ and about 2.5 \times 10¹⁰ M⁻¹ s⁻¹, respectively, where $k_3 = k_3^a[H^+] + k_3^b[OH^-]$.

In the case of the tert-butyl derivative **2d,** similar calculation of k_3 gave the acidity- k_3 profile shown in Figure 2. The acid-catalyzed reaction is also simple, giving $k_3^a = 2.9 \text{ M}^{-1} \text{ s}^{-1}$. However, the slope of the base-catalyzed portion of the profiie is smaller than unity, suggesting some mechanistic complexity. In some carboxylate buffers, the observed rate constants for the appearance of **4d** from **ad,** which are close to k_3 in this pH range, showed a strongly curved dependence on buffer concentration. The limiting rate constants k_{\max} of the buffer curve fall on a line of a unit slope defined by $k_3^b = 3.1 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$. These observations conform to a mechanism similar to that given for the dithiolane derivative, which involves a change in the rate-determining step of the base-catalyzed decay of **3d** (eq **7).3** At higher pH and limiting zero buffer con-

$$
\begin{array}{c}\n\begin{matrix}\n & k_{B}^{[8]} \\
 & k_{3}^{0}(H_{2}^{0})\n\end{matrix} \\
\begin{matrix}\n & k_{4}^{0}(H_{1}^{0}^{0})\n\end{matrix} \\
\begin{matrix}\n & k_{5}^{0}(H_{1}^{0}^{0})\n\end{matrix} \\
\begin{matrix}\n & k_{6}^{0}(H_{1}^{0}^{0})\n\end{matrix} \\
\begin{matrix}\n & k_{7}^{0}(H_{1}^{0}^{0})\n\end{matrix} \\
\begin{matrix}\n & k_{8}^{0}(H_{1}^{0}^{0})\n\end{matrix} \\
\begin{matrix}\n & k_{1}^{0}(H_{1}^{0}^{0})\n\end{matrix} \\
\begin{matrix}\n & k_{1}^{0}(H_{1}^{0}^{0})
$$

centration, diffusion-controlled proton transfer from **3d** to OH⁻ (k_3^{OH}) being about 4×10^9 M⁻¹ s⁻¹ as obtained from the profile) to form the anionic intermediate **3d-** is mostly rate-determining, while the unimolecular ring opening of **3d-** becomes rate-determining **as** hydronium ion and acids accelerate the reverse proton transfer at higher acid concentrations: a limiting rate constant is k_3 ^b. Attempts to examine this mechanistic change with other 2-alkyl derivatives of **2** and dithiolanylium ion were unsuccessful owing to an accompanying side reaction to form deprotonated products like **1.**

In conclusion, the breakdown of the tetrahedral intermediates like **3** occurs through two paths involving the S-protonated and the anionic intermediates. The basecatalyzed reaction through the latter intermediate undergoes a change in the rate-determining step, but the acid-catalyzed reaction does not involve such a change.

Experimental Section

Materials. 2-Alkylidene-1,3-dithianes **1a-c** were prepared from
a corresponding perchlorates of carbocations 2.^{10,11} 2-tertthe corresponding perchlorates of carbocations $2^{10,11}$ Butyl-1,3-dithianylium (2d) perchlorate was obtained in the same way as described previously;^{3,11} UV (HClO₄), λ_{max} 313 nm (*t* 11 300). Treatment of **2d** with methanol in the presence of triethylamine in the same way as the dithiolane derivative3 and Kugelrohr distillation at oven temperature of 120 °C and 2 mmHg gave **2-tert-butyl-2-methoxy-1,3-dithiane (3d').** Anal. Calcd for $C_9H_{18}OS_2$: C, 52.38; H, 8.79; S, 31.07. Found: C, 52.08; H, 8.64; S, 31.69. 'H NMR (CC1,): 6 1.09 (s, 9 H), 1.7-2.0 (m, 2 H), 2.7-2.9 (m, 4 H), 3.45 (s, 3 H).

Kinetic and equilibrium measurements were carried out in the same way as before^{1,3} in aqueous solution containing $0.5-1$ vol % of CH3CN at 0.50 **M** ionic strength (except for strong acids) and 25 ± 0.1 °C on a Shimadzu UV 200 spectrometer or a Union RA 1100 stopped-flow apparatus. Values of pK_R were calculated according to literature procedures.¹²

Registry No. la, 21777-31-1; **lb,** 51102-62-6; **IC,** 36998-38-6; **3d',** 105064-91-3.

Supplementary Material Available: Tables of rate constants and absorbances (3 pages). Ordering information is given on any current masthead page.

⁽⁸⁾ $K_2 = 0.78$ and $K_R = 0.79$ were used.

⁽⁹⁾ The solid curve for 3d in Figure 2 is a theoretical one according to eq 10 of ref 3 with k_3 ^O = 0.15 s⁻¹, k_3 ^O/ k_4 = 0.13, and k_{-3} H/ k_4 = 480 M⁻¹.

⁽¹⁰⁾ Okuyama, T. *Tetrahedron Lett.* 1982, 23, **2665-2666.**

⁽¹¹⁾ Okuyama, **T.;** Fujiwara, W.; Fueno, T. *Bull. Chem. SOC. Jpn.* **1986, 59, 453-456.**

⁽¹²⁾ Albert, **A.;** Sergeant, E. P. *Ionization Constants of Acids and Bases. A Laboratory Manual;* Methuen: London, **1962;** Chapter **4.**